ShareThis Page
Mars was once rich in water |

Mars was once rich in water

| Friday, November 30, 2001 12:00 a.m

WASHINGTON – Mars is now dry, dusty and cold, but a new study confirms that the Red Planet once was covered by vast oceans and had more water per square mile than Earth.

In fact, it once had enough water to cover the planet to a depth of almost a mile, researchers say, citing an analysis of data measuring the amount of molecular hydrogen in the atmosphere.

Unlike Earth, Mars lost its water over millions of years through a combination of chemical reaction and the bombardment of asteroids and comets.

There is much evidence now that Mars had an ocean of liquid water, said Vladimir A. Krasnopolsky of Catholic University of America. ”But the climate changed. … Mars became a cold desert.”

Krasnopolsky said the proven abundance of water in Mars’ early history ”improves the prospects” that life could have evolved there.

In a study appearing today in the journal Science, planetary researchers Krasnopolsky and Paul D. Feldman of Johns Hopkins University said that Mars’ upper atmosphere contains molecular hydrogen, or H2, a finding that confirms earlier theoretical models of the water history of the planet.

The H2 comes from a chemical reaction, called dissociation, that split the hydrogen from water, H20, and allowed the lighter hydrogen to escape to the atmosphere.

”It is a complex chemistry process of which we are detecting only one piece,” of molecular hydrogen, said Feldman. But these findings help to support earlier estimates of the amount of water once on Mars.

Donald M. Hunten, an expert on planetary atmospheres at the University of Arizona, Tucson, said the studies by Krasnopolsky and Feldman make an important contribution because they strengthen earlier theories of Mars’ water history.

”This is an observational confirmation of a theoretical model,” said Hunten. ”I am happy to see such a confirmation.”

The Krasnopolsky and Feldman study is based on data from the Far Ultraviolet Spectroscopic Explorer, a spacecraft that can detect and identify chemicals in the atmosphere of the distant planets. The data is the first to detect molecular hydrogen in the atmosphere of Mars.

Krasnopolsky said the findings support this scenario of Mars’ water history:

The planet was formed about 4.6 billion years ago and during its early history had enough water for an ocean about a mile deep. Much of this water, however, was chemically bound to the rocks and soils of the planet. This material was rich in iron. Krasnopolsky said that over a 300 million year period, the water reacted with the iron, releasing molecular hydrogen to the atmosphere in a process called hydrodynamic escape.

”There was a massive escape of molecular hydrogen and the loss of water was very rapid,” he said. The iron-water reaction, said Krasnopolsky, helped turn Mars into its rusty-red color.

At about 3.6 billion years ago, Mars, along with Earth, underwent a massive bombardment from asteroids and comets. For millions of years, rocks, some of them mountain-sized and bigger, rained from space.

The pounding of Mars stripped away most of its atmosphere, leaving a thin layer of gas, mostly carbon dioxide. Hunten said this did not happen on Earth because it is bigger than Mars and has a stronger gravitational pull, allowing Earth to keep its denser atmosphere.

After the pounding, Mars cooled and another phase of water loss began.

Sunlight, teamed with the thin atmosphere, triggered a complex chemical reaction that ultimately resulted in an increased abundance of molecular hydrogen in the atmosphere – a chemical type that was detected by the FUSE spacecraft and analyzed by Krasnopolsky and Feldman.

Krasnopolsky said the water lost from Mars would have been enough to cover the planet to a depth of about 90 feet.

Categories: News
TribLIVE commenting policy

You are solely responsible for your comments and by using you agree to our Terms of Service.

We moderate comments. Our goal is to provide substantive commentary for a general readership. By screening submissions, we provide a space where readers can share intelligent and informed commentary that enhances the quality of our news and information.

While most comments will be posted if they are on-topic and not abusive, moderating decisions are subjective. We will make them as carefully and consistently as we can. Because of the volume of reader comments, we cannot review individual moderation decisions with readers.

We value thoughtful comments representing a range of views that make their point quickly and politely. We make an effort to protect discussions from repeated comments either by the same reader or different readers

We follow the same standards for taste as the daily newspaper. A few things we won't tolerate: personal attacks, obscenity, vulgarity, profanity (including expletives and letters followed by dashes), commercial promotion, impersonations, incoherence, proselytizing and SHOUTING. Don't include URLs to Web sites.

We do not edit comments. They are either approved or deleted. We reserve the right to edit a comment that is quoted or excerpted in an article. In this case, we may fix spelling and punctuation.

We welcome strong opinions and criticism of our work, but we don't want comments to become bogged down with discussions of our policies and we will moderate accordingly.

We appreciate it when readers and people quoted in articles or blog posts point out errors of fact or emphasis and will investigate all assertions. But these suggestions should be sent via e-mail. To avoid distracting other readers, we won't publish comments that suggest a correction. Instead, corrections will be made in a blog post or in an article.